Game Plan: What AI can do for Football, and What Football can do for AI
The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data colle...
Saved in:
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
18.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The rapid progress in artificial intelligence (AI) and machine learning has
opened unprecedented analytics possibilities in various team and individual
sports, including baseball, basketball, and tennis. More recently, AI
techniques have been applied to football, due to a huge increase in data
collection by professional teams, increased computational power, and advances
in machine learning, with the goal of better addressing new scientific
challenges involved in the analysis of both individual players' and coordinated
teams' behaviors. The research challenges associated with predictive and
prescriptive football analytics require new developments and progress at the
intersection of statistical learning, game theory, and computer vision. In this
paper, we provide an overarching perspective highlighting how the combination
of these fields, in particular, forms a unique microcosm for AI research, while
offering mutual benefits for professional teams, spectators, and broadcasters
in the years to come. We illustrate that this duality makes football analytics
a game changer of tremendous value, in terms of not only changing the game of
football itself, but also in terms of what this domain can mean for the field
of AI. We review the state-of-the-art and exemplify the types of analysis
enabled by combining the aforementioned fields, including illustrative examples
of counterfactual analysis using predictive models, and the combination of
game-theoretic analysis of penalty kicks with statistical learning of player
attributes. We conclude by highlighting envisioned downstream impacts,
including possibilities for extensions to other sports (real and virtual). |
---|---|
DOI: | 10.48550/arxiv.2011.09192 |