Parity Considerations in Rogers-Ramanujan-Gordon Type Overpartitions

In 2010, Andrews considers a variety of parity questions connected to classical partition identities of Euler, Rogers, Ramanujan and Gordon. As a large part in his paper, Andrews considered the partitions by restricting the parity of occurrences of even numbers or odd numbers in the Rogers-Ramanujan...

Full description

Saved in:
Bibliographic Details
Main Authors Sang, Doris D. M, Shi, Diane Y. H
Format Journal Article
LanguageEnglish
Published 05.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In 2010, Andrews considers a variety of parity questions connected to classical partition identities of Euler, Rogers, Ramanujan and Gordon. As a large part in his paper, Andrews considered the partitions by restricting the parity of occurrences of even numbers or odd numbers in the Rogers-Ramanujan-Gordon type. The Rogers-Ramanujan-Gordon type partition was defined by Gordon in 1961 as a combinatorial generalization of the Rogers-Ramaujan identities with odd moduli. In 1974, Andrews derived an identity which can be considered as the generating function counterpart of the Rogers-Ramanujan-Gordon theorem, and since then it has been called the Andrews--Gordon identity. By revisting the Andrews--Gordon identity Andrews extended his results by considering some additional restrictions involving parities to obtain some Rogers-Ramanujan-Gordon type theorems and Andrews--Gordon type identities. In the end of Andrews' paper, he posed $15$ open problems. Most of Andrews' $15$ open problems have been settled, but the $11$th that "extend the parity indices to overpartitions in a manner" has not. In 2013, Chen, Sang and Shi, derived the overpartition analogues of the Rogers-Ramanujan-Gordon theorem and the Andrews-Gordon identity. In this paper, we post some parity restrictions on these overpartitions analogues to get some Rogers-Ramanujan-Gordon type overpartition theorems.
DOI:10.48550/arxiv.1801.01642