Tree density estimation

We study the problem of estimating the density $f(\boldsymbol x)$ of a random vector ${\boldsymbol X}$ in $\mathbb R^d$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. An optimal spanning tree minimizes th...

Full description

Saved in:
Bibliographic Details
Main Authors Györfi, László, Kontorovich, Aryeh, Weiss, Roi
Format Journal Article
LanguageEnglish
Published 23.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the problem of estimating the density $f(\boldsymbol x)$ of a random vector ${\boldsymbol X}$ in $\mathbb R^d$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. An optimal spanning tree minimizes the Kullback-Leibler divergence between $f$ and $f_{T}$. From i.i.d. data we identify an optimal tree $T^*$ and efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz $f$ with bounded support, $\mathbb E \left\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\right\}=O\big(n^{-1/4}\big)$, a dimension-free rate.
DOI:10.48550/arxiv.2111.11971