Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction
There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In cont...
Saved in:
Main Authors | , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
15.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There is often latent network structure in spatial and temporal data and the
tools of network analysis can yield fascinating insights into such data. In
this paper, we develop a nonparametric method for network reconstruction from
spatiotemporal data sets using multivariate Hawkes processes. In contrast to
prior work on network reconstruction with point-process models, which has often
focused on exclusively temporal information, our approach uses both temporal
and spatial information and does not assume a specific parametric form of
network dynamics. This leads to an effective way of recovering an underlying
network. We illustrate our approach using both synthetic networks and networks
constructed from real-world data sets (a location-based social media network, a
narrative of crime events, and violent gang crimes). Our results demonstrate
that, in comparison to using only temporal data, our spatiotemporal approach
yields improved network reconstruction, providing a basis for meaningful
subsequent analysis --- such as community structure and motif analysis --- of
the reconstructed networks. |
---|---|
DOI: | 10.48550/arxiv.1811.06321 |