Boosting Adversarial Transferability via Fusing Logits of Top-1 Decomposed Feature

Recent research has shown that Deep Neural Networks (DNNs) are highly vulnerable to adversarial samples, which are highly transferable and can be used to attack other unknown black-box models. To improve the transferability of adversarial samples, several feature-based adversarial attack methods hav...

Full description

Saved in:
Bibliographic Details
Main Authors Weng, Juanjuan, Luo, Zhiming, Lin, Dazhen, Li, Shaozi, Zhong, Zhun
Format Journal Article
LanguageEnglish
Published 02.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent research has shown that Deep Neural Networks (DNNs) are highly vulnerable to adversarial samples, which are highly transferable and can be used to attack other unknown black-box models. To improve the transferability of adversarial samples, several feature-based adversarial attack methods have been proposed to disrupt neuron activation in the middle layers. However, current state-of-the-art feature-based attack methods typically require additional computation costs for estimating the importance of neurons. To address this challenge, we propose a Singular Value Decomposition (SVD)-based feature-level attack method. Our approach is inspired by the discovery that eigenvectors associated with the larger singular values decomposed from the middle layer features exhibit superior generalization and attention properties. Specifically, we conduct the attack by retaining the decomposed Top-1 singular value-associated feature for computing the output logits, which are then combined with the original logits to optimize adversarial examples. Our extensive experimental results verify the effectiveness of our proposed method, which can be easily integrated into various baselines to significantly enhance the transferability of adversarial samples for disturbing normally trained CNNs and advanced defense strategies. The source code of this study is available at https://github.com/WJJLL/SVD-SSA
DOI:10.48550/arxiv.2305.01361