Counterfactual Explanations via Locally-guided Sequential Algorithmic Recourse
Counterfactuals operationalised through algorithmic recourse have become a powerful tool to make artificial intelligence systems explainable. Conceptually, given an individual classified as y -- the factual -- we seek actions such that their prediction becomes the desired class y' -- the counte...
Saved in:
Main Authors | , , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
08.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Counterfactuals operationalised through algorithmic recourse have become a
powerful tool to make artificial intelligence systems explainable.
Conceptually, given an individual classified as y -- the factual -- we seek
actions such that their prediction becomes the desired class y' -- the
counterfactual. This process offers algorithmic recourse that is (1) easy to
customise and interpret, and (2) directly aligned with the goals of each
individual. However, the properties of a "good" counterfactual are still
largely debated; it remains an open challenge to effectively locate a
counterfactual along with its corresponding recourse. Some strategies use
gradient-driven methods, but these offer no guarantees on the feasibility of
the recourse and are open to adversarial attacks on carefully created
manifolds. This can lead to unfairness and lack of robustness. Other methods
are data-driven, which mostly addresses the feasibility problem at the expense
of privacy, security and secrecy as they require access to the entire training
data set. Here, we introduce LocalFACE, a model-agnostic technique that
composes feasible and actionable counterfactual explanations using
locally-acquired information at each step of the algorithmic recourse. Our
explainer preserves the privacy of users by only leveraging data that it
specifically requires to construct actionable algorithmic recourse, and
protects the model by offering transparency solely in the regions deemed
necessary for the intervention. |
---|---|
DOI: | 10.48550/arxiv.2309.04211 |