Almost-Optimal Computational Basis State Transpositions
We give an explicit construction to perform any $n$-qubit computational basis state transposition using $\Theta(n)$ gates. This nearly coincides with the lower bound $\Omega(n/\log(nd))$ on worst-case and average-case gate complexity to perform transpositions using a $d$-element gate-set, which we a...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
22.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We give an explicit construction to perform any $n$-qubit computational basis
state transposition using $\Theta(n)$ gates. This nearly coincides with the
lower bound $\Omega(n/\log(nd))$ on worst-case and average-case gate complexity
to perform transpositions using a $d$-element gate-set, which we also prove. |
---|---|
DOI: | 10.48550/arxiv.2309.12820 |