Disease Labeling via Machine Learning is NOT quite the same as Medical Diagnosis

A key step in medical diagnosis is giving the patient a universally recognized label (e.g. Appendicitis) which essentially assigns the patient to a class(es) of patients with similar body failures. However, two patients having the same disease label(s) with high probability may still have difference...

Full description

Saved in:
Bibliographic Details
Main Author BenBassat, Moshe
Format Journal Article
LanguageEnglish
Published 08.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A key step in medical diagnosis is giving the patient a universally recognized label (e.g. Appendicitis) which essentially assigns the patient to a class(es) of patients with similar body failures. However, two patients having the same disease label(s) with high probability may still have differences in their feature manifestation patterns implying differences in the required treatments. Additionally, in many cases, the labels of the primary diagnoses leave some findings unexplained. Medical diagnosis is only partially about probability calculations for label X or Y. Diagnosis is not complete until the patient overall situation is clinically understood to the level that enables the best therapeutic decisions. Most machine learning models are data centric models, and evidence so far suggest they can reach expert level performance in the disease labeling phase. Nonetheless, like any other mathematical technique, they have their limitations and applicability scope. Primarily, data centric algorithms are knowledge blind and lack anatomy and physiology knowledge that physicians leverage to achieve complete diagnosis. This article advocates to complement them with intelligence to overcome their inherent limitations as knowledge blind algorithms. Machines can learn many things from data, but data is not the only source that machines can learn from. Historic patient data only tells us what the possible manifestations of a certain body failure are. Anatomy and physiology knowledge tell us how the body works and fails. Both are needed for complete diagnosis. The proposed Double Deep Learning approach, along with the initiative for Medical Wikipedia for Smart Machines, leads to AI diagnostic support solutions for complete diagnosis beyond the limited data only labeling solutions we see today. AI for medicine will forever be limited until their intelligence also integrates anatomy and physiology.
DOI:10.48550/arxiv.1909.03470