Uniform Artin-Rees Bounds for Syzygies
Let $(R,m)$ be a local Noetherian ring, let $M$ be a finitely generated $R$-module and let $(F_{\bullet},\partial_{\bullet})$ be a free resolution of $M$. We find a uniform bound $h$ such that the Artin-Rees containment $I^n F_i\cap Im \, \partial_{i+1} \subseteq I^{n-h} Im \, \partial_{i+1}$ holds...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
11.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $(R,m)$ be a local Noetherian ring, let $M$ be a finitely generated
$R$-module and let $(F_{\bullet},\partial_{\bullet})$ be a free resolution of
$M$. We find a uniform bound $h$ such that the Artin-Rees containment $I^n
F_i\cap Im \, \partial_{i+1} \subseteq I^{n-h} Im \, \partial_{i+1}$ holds for
all integers $i\ge d$, for all integers $n\ge h$, and for all ideals $I$ of
$R$. In fact, we show that a considerably stronger statement holds. The uniform
bound $h$ holds for all ideals and all resolutions of $d$th syzygy modules. In
order to prove our statements, we introduce the concept of Koszul annihilating
sequences. |
---|---|
DOI: | 10.48550/arxiv.1406.2866 |