Impact of Triaxiality on the Emission and Absorption of Neutrons and Gamma Rays in Heavy Nuclei
For many spin-0 target nuclei neutron capture measurements yield information on level densities at the neutron separation energy. Also the average photon width has been determined from capture data as well as Maxwellian average cross sections for the energy range of unresolved resonances. Thus it is...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
15.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For many spin-0 target nuclei neutron capture measurements yield information
on level densities at the neutron separation energy. Also the average photon
width has been determined from capture data as well as Maxwellian average cross
sections for the energy range of unresolved resonances. Thus it is challenging
to use this data set for a test of phenomenological prescriptions for the
prediction of radiative processes. An important ingredient for respective
calculations is the photon strength function for which a parameterization was
proposed using a fit to giant dipole resonance shapes on the basis of
theoretically determined ground state deformations including triaxiality.
Deviations from spherical and axial symmetry also influence level densities and
it is suggested to use a combined parameterization for both, level density and
photon strength. The formulae presented give a good description of the data for
low spin capture into 124 nuclei with 72<A<244 and only very few global
parameters have to be adjusted when the predetermined information on ground
state shapes of the nuclei involved is accounted for. |
---|---|
DOI: | 10.48550/arxiv.1306.3564 |