Generalized Dyck paths of bounded height

Generalized Dyck paths (or discrete excursions) are one-dimensional paths that take their steps in a given finite set S, start and end at height 0, and remain at a non-negative height. Bousquet-M\'elou showed that the generating function E_k of excursions of height at most k is of the form F_k/...

Full description

Saved in:
Bibliographic Details
Main Author Bacher, Axel
Format Journal Article
LanguageEnglish
Published 11.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Generalized Dyck paths (or discrete excursions) are one-dimensional paths that take their steps in a given finite set S, start and end at height 0, and remain at a non-negative height. Bousquet-M\'elou showed that the generating function E_k of excursions of height at most k is of the form F_k/F_{k+1}, where the F_k are polynomials satisfying a linear recurrence relation. We give a combinatorial interpretation of the polynomials F_k and of their recurrence relation using a transfer matrix method. We then extend our method to enumerate discrete meanders (or paths that start at 0 and remain at a non-negative height, but may end anywhere). Finally, we study the particular case where the set S is symmetric and show that several simplifications occur.
DOI:10.48550/arxiv.1303.2724