Privacy Tradeoffs in Predictive Analytics
Online services routinely mine user data to predict user preferences, make recommendations, and place targeted ads. Recent research has demonstrated that several private user attributes (such as political affiliation, sexual orientation, and gender) can be inferred from such data. Can a privacy-cons...
Saved in:
Main Authors | , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
31.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Online services routinely mine user data to predict user preferences, make
recommendations, and place targeted ads. Recent research has demonstrated that
several private user attributes (such as political affiliation, sexual
orientation, and gender) can be inferred from such data. Can a
privacy-conscious user benefit from personalization while simultaneously
protecting her private attributes? We study this question in the context of a
rating prediction service based on matrix factorization. We construct a
protocol of interactions between the service and users that has remarkable
optimality properties: it is privacy-preserving, in that no inference algorithm
can succeed in inferring a user's private attribute with a probability better
than random guessing; it has maximal accuracy, in that no other
privacy-preserving protocol improves rating prediction; and, finally, it
involves a minimal disclosure, as the prediction accuracy strictly decreases
when the service reveals less information. We extensively evaluate our protocol
using several rating datasets, demonstrating that it successfully blocks the
inference of gender, age and political affiliation, while incurring less than
5% decrease in the accuracy of rating prediction. |
---|---|
DOI: | 10.48550/arxiv.1403.8084 |