Microscopic Model of Cuprate Superconductivity
We present a model for cuprate superconductivity based on the identification of an experimentally detected "local superconductor" as a charge 2 fermion pairing in a circular, stationary density wave. This wave acts like a highly correlated local "boson" satisfying a modified Coop...
Saved in:
Main Authors | , |
---|---|
Format | Journal Article |
Language | English |
Published |
07.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a model for cuprate superconductivity based on the identification
of an experimentally detected "local superconductor" as a charge 2 fermion
pairing in a circular, stationary density wave. This wave acts like a highly
correlated local "boson" satisfying a modified Cooper problem with additional
correlation stabilization relative to the separate right- and left-handed
density waves composing it. This local "boson" could be formed in a two-bound
roton-like manner; it has Fermion statistics. Delocalized superconductive
pairing (superconductivity) is achieved by a Feshbach resonance of two unpaired
holes (electrons) resonating with a virtual energy level of the bound pair
state of the local "boson" as described by the Boson-Fermion-Gossamer (BFG)
model. The spin-charge order interaction offers an explanation for the overall
shape of the superconducting dome as well a microscopic basis for the cuprate
superconducting transition temperatures. An explanation of the correlation of
superconducting transition temperature with experimental inelastic neutron and
electron Raman scattering is proposed, based on the energy of the virtual bound
pair. These and other modifications discussed suggest a microscopic explanation
for the entire cuprate superconductivity dome shape. |
---|---|
DOI: | 10.48550/arxiv.1004.1100 |