Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to...

Full description

Saved in:
Bibliographic Details
Published inComputational Intelligence and Neuroscience Vol. 2017; no. 2017; pp. 1 - 24
Main Authors Banville, Hubert, Falk, Tiago H., Gupta, Rishabh
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Limiteds 01.01.2017
Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Manuel Rosa-Zurera
ISSN:1687-5265
1687-5273
DOI:10.1155/2017/3524208