Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth

The composition of biologic molecules isolated from biominerals suggests that control of mineral growth is linked to biochemical features. Here, we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO₃) and their net negative molecul...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 51; pp. 19237 - 19242
Main Authors Elhadj, S, De Yoreo, J.J, Hoyer, J.R, Dove, P.M
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.12.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The composition of biologic molecules isolated from biominerals suggests that control of mineral growth is linked to biochemical features. Here, we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO₃) and their net negative molecular charge and hydrophilicity. The degree of enhancement depends on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules. The result is a decrease in the energy barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge. This insight may contribute to an improved understanding of diverse systems of biomineralization and design of new synthetic growth modulators.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Joanna Aizenberg, Lucent, Murray Hill, NJ, and accepted by the Editorial Board November 1, 2006
Author contributions: S.E. and P.M.D. designed research; S.E. performed research; J.R.H. contributed new reagents/analytic tools; S.E., J.J.D.Y., and P.M.D. analyzed data; and S.E., J.J.D.Y., J.R.H., and P.M.D. wrote the paper.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0605748103