Synthesis and Autoradiography of Novel F‑18 Labeled Reversible Radioligands for Detection of Monoamine Oxidase B

Monoamine oxidase B (MAO-B) is an important enzyme regulating the levels of monoaminergic neurotransmitters. Selective MAO-B inhibitors have been labeled with carbon-11 or fluorine-18 to visualize the localization of MAO-B in vivo by positron emission tomography (PET) and thereby have been useful fo...

Full description

Saved in:
Bibliographic Details
Published inACS chemical neuroscience Vol. 11; no. 24; pp. 4398 - 4404
Main Authors Nag, Sangram, Jia, Zhisheng, Svedberg, Marie, Jackson, Alex, Ahmad, Rabia, Luthra, Sajinder, Varnäs, Katarina, Farde, Lars, Halldin, Christer
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monoamine oxidase B (MAO-B) is an important enzyme regulating the levels of monoaminergic neurotransmitters. Selective MAO-B inhibitors have been labeled with carbon-11 or fluorine-18 to visualize the localization of MAO-B in vivo by positron emission tomography (PET) and thereby have been useful for studying neurodegenerative diseases. The aim of this study was to develop promising fluorine-18 labeled reversible MAO-B PET radioligands and their biological evaluation in vitro by autoradiography. Radiolabeling was achieved by classical one-step fluorine-18 nucleophilic substitution reaction. The stability and radiochemical yield was analyzed with HPLC. All five fluorine-18 labeled compounds were tested in human whole hemisphere autoradiography experiments. Five compounds (GEH200439, GEH200448, GEH200449, GEH200431A, and GEH200431B) were successfully radiolabeled with fluorine-18, and the incorporation yield of the fluorination reactions varied from 10 to 45% depending on the compound. The radiochemical purity was higher than 99% for all at the end of synthesis. Radioligands were found to be stable, with a radiochemical purity of >99% in a sterile phosphate buffered saline (pH = 7.4) over the duration of the study. The ARG binding density of only 18F-GEH200449 was consistent with known MAO-B expression in the human brain. Radiolabeling of five new fluorine-18 MAO-B reversible inhibitors was successfully accomplished. Compound 18F-GEH200449 binds specifically to MAO-B in vitro postmortem brain and could be a potential candidate for in vivo PET investigation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7193
1948-7193
DOI:10.1021/acschemneuro.0c00631