A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope 1 – 3 . However, previous...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 620; no. 7973; pp. 292 - 298
Main Authors Coulombe, Louis-Philippe, Benneke, Björn, Challener, Ryan, Piette, Anjali A. A., Wiser, Lindsey S., Mansfield, Megan, MacDonald, Ryan J., Beltz, Hayley, Feinstein, Adina D., Radica, Michael, Savel, Arjun B., Dos Santos, Leonardo A., Bean, Jacob L., Parmentier, Vivien, Wong, Ian, Rauscher, Emily, Komacek, Thaddeus D., Kempton, Eliza M.-R., Tan, Xianyu, Hammond, Mark, Lewis, Neil T., Line, Michael R., Lee, Elspeth K. H., Shivkumar, Hinna, Crossfield, Ian J. M., Nixon, Matthew C., Rackham, Benjamin V., Wakeford, Hannah R., Welbanks, Luis, Zhang, Xi, Batalha, Natalie M., Berta-Thompson, Zachory K., Changeat, Quentin, Désert, Jean-Michel, Espinoza, Néstor, Goyal, Jayesh M., Harrington, Joseph, Knutson, Heather A., Kreidberg, Laura, López-Morales, Mercedes, Shporer, Avi, Sing, David K., Stevenson, Kevin B., Aggarwal, Keshav, Ahrer, Eva-Maria, Alam, Munazza K., Bell, Taylor J., Blecic, Jasmina, Caceres, Claudio, Carter, Aarynn L., Casewell, Sarah L., Crouzet, Nicolas, Cubillos, Patricio E., Decin, Leen, Fortney, Jonathan J., Gibson, Neale P., Heng, Kevin, Henning, Thomas, Iro, Nicolas, Kendrew, Sarah, Lagage, Pierre-Olivier, Leconte, Jérémy, Lendl, Monika, Lothringer, Joshua D., Mancini, Luigi, Mikal-Evans, Thomas, Molaverdikhani, Karan, Nikolov, Nikolay K., Ohno, Kazumasa, Palle, Enric, Piaulet, Caroline, Redfield, Seth, Roy, Pierre-Alexis, Tsai, Shang-Min, Venot, Olivia, Wheatley, Peter J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.08.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope 1 – 3 . However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis 3 – 12 . Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS 13 instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6 σ confidence) and evidence for optical opacity, possibly attributable to H − , TiO and VO (combined significance of 3.8 σ ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’, M/H = 1.0 3 − 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators. The dayside thermal emission spectrum and brightness temperature map of the ultra-hot Jupiter WASP-18b obtained from the NIRISS instrument on the JWST showed water emission features, an atmosphere consistent with solar metallicity, as well as a steep and symmetrical decrease in temperature towards the nightside.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0028-0836
1476-4687
1476-4687
DOI:10.1038/s41586-023-06230-1