LMI-Based Stability Criterion of Impulsive T-S Fuzzy Dynamic Equations via Fixed Point Theory
By formulating a contraction mapping and the matrix exponential function, the authors apply linear matrix inequality (LMI) technique to investigate and obtain the LMI-based stability criterion of a class of time-delay Takagi-Sugeno (T-S) fuzzy differential equations. To the best of our knowledge, it...
Saved in:
Published in | Abstract and Applied Analysis Vol. 2013; no. 2013; pp. 409 - 417-242 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Limiteds
01.01.2013
Hindawi Puplishing Corporation Hindawi Publishing Corporation John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | By formulating a contraction mapping and the matrix exponential function, the authors apply linear matrix inequality (LMI) technique to investigate and obtain the LMI-based stability criterion of a class of time-delay Takagi-Sugeno (T-S) fuzzy differential equations. To the best of our knowledge, it is the first time to obtain the LMI-based stability criterion derived by a fixed point theory. It is worth mentioning that LMI methods have high efficiency and other advantages in largescale engineering calculations. And the feasibility of LMI-based stability criterion can efficiently be computed and confirmed by computer Matlab LMI toolbox. At the end of this paper, a numerical example is presented to illustrate the effectiveness of the proposed methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2013/261353 |