Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.% NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73×10−7, 7.34×10−6, and 3.43×10−5 S cm−1, respectively, at room temperature. These membranes have bee...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Photoenergy Vol. 2010; no. 2010; pp. 252 - 258
Main Authors Taha, Rosna Mat, Yahya, R., Majid, S. R., Teo, L. P., Buraidah, M. H., Arof, A. K.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Limiteds 01.01.2010
Hindawi Publishing Corporation
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.% NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73×10−7, 7.34×10−6, and 3.43×10−5 S cm−1, respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO2/polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1110-662X
1687-529X
DOI:10.1155/2010/805836