Hydroalcoholic extract of Passiflora incarnata improves the autistic-like behavior and neuronal damage in a valproic acid-induced rat model of autism

Experimental autism in rodents can be caused by prenatal valproic acid (VPA) exposure. Some diseases, such as attention-deficit hyperactivity disorder (ADHD), insomnia, opiate withdrawal, and generalized anxiety disorder can be treated by consuming Passiflora incarnata, due to the possession of bioa...

Full description

Saved in:
Bibliographic Details
Published inJournal of Traditional and Complementary Medicine Vol. 13; no. 4; pp. 315 - 324
Main Authors Amini, Fatemeh, Amini-Khoei, Hossein, Haratizadeh, Sara, Setayesh, Mohammad, Basiri, Mohsen, Raeiszadeh, Mahboobeh, Nozari, Masoumeh
Format Journal Article
LanguageEnglish
Published Netherlands 國立臺灣大學食品與生物分子研究中心 01.07.2023
Elsevier B.V
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Experimental autism in rodents can be caused by prenatal valproic acid (VPA) exposure. Some diseases, such as attention-deficit hyperactivity disorder (ADHD), insomnia, opiate withdrawal, and generalized anxiety disorder can be treated by consuming Passiflora incarnata, due to the possession of bioactive compounds like alkaloids, phenols, and flavonoids. The present study aims to investigate the role of the hydroalcoholic extract of Passiflora incarnata in behavioral and oxidative stress aberrations induced by VPA. On the gestational day (GD), 12.5, pregnant Wistar rats received VPA (600 mg/kg subcutaneously). Male pups were treated with the extract (30,100, and 300 mg/kg) from postnatal day 35 to the end of the experiment, and underwent behavioral testing to evaluate locomotion, repetitive, and stereotyped movements, anxiety, and social and cognitive behaviors. After behavioral testing, the blood sample was taken from the left ventricle to determine serum catalase (CAT), superoxide dismutase (SOD), malon-dialdehyde (MDA), and total antioxidant capacity (TAC). Then the animals were euthanized and their brains were taken out for histological assays of the prefrontal cortex (PFC) and CA1 hippocampus with hematoxylin/eosin. The total phenol and flavonoid content and antioxidant activity of the extract were also measured. A significant improvement was observed in behavioral disturbances, particularly with 300 mg/kg of Passiflora. Moreover, the formation of oxidative stress markers significantly decreased at this dose. The extract also reduced the percentage of damaged cells in the CA1 and PFC. The results indicated that Passiflora extract could ameliorate VPA-induced behavioral aberrations possibly due to the antioxidant actions of its bioactive compounds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2225-4110
2225-4110
DOI:10.1016/j.jtcme.2023.02.005