Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell
Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while at the same time accomplishing biological wastewater treat...
Saved in:
Published in | Environmental science & technology Vol. 38; no. 7; pp. 2281 - 2285 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.04.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while at the same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m-2) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3−33 h and to the influent wastewater strength over a range of 50−220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5−5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was <12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations. |
---|---|
Bibliography: | istex:5A4102EBCAAD35C7714FF0C0B925AC148428F5C1 ark:/67375/TPS-J7WP5TC5-G ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es034923g |