Fabrication of a GNP/Fe–Mg Binary Oxide Composite for Effective Removal of Arsenic from Aqueous Solution

Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electron exchange and ion transport for heavy-metal adsorption. In this study, we report a facile thermal decomposition route to fabricate a graphene-supported Fe–Mg oxide composit...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 2; no. 1; pp. 218 - 226
Main Authors La, Duong Duc, Patwari, Jayprakash M., Jones, Lathe A., Antolasic, Frank, Bhosale, Sheshanath V.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.01.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electron exchange and ion transport for heavy-metal adsorption. In this study, we report a facile thermal decomposition route to fabricate a graphene-supported Fe–Mg oxide composite. The prepared composite was characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Batch experiments were carried out to evaluate the arsenic adsorption behavior of the GNP/Fe–Mg oxide composite. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, in which the sorption kinetics of the arsenic adsorption process by the composite was found to be pseudo-second-order. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled-column filter test. The GNP/Fe–Mg oxide composite exhibited significant fast adsorption of arsenic over a wide range of solution pHs, with exceptional durability and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.6b00304