New Quasi-Coincidence Point Polynomial Problems

Let F:ℝ×ℝ→ℝ be a real-valued polynomial function of the form F(x,y)=as(x)ys+as-1(x)ys-1+⋯+a0(x), where the degree s of y in F(x,y) is greater than or equal to 1. For arbitrary polynomial function f(x)∈ℝ[x], x∈ℝ, we will find a polynomial solution y(x)∈ℝ[x] to satisfy the following equation: (*): F(x...

Full description

Saved in:
Bibliographic Details
Published inJournal of Applied Mathematics Vol. 2013; no. 2013; pp. 525 - 532-854
Main Authors Chen, Yi-Chou, Lai, Hang-Chin
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Limiteds 01.01.2013
Hindawi Puplishing Corporation
Hindawi Publishing Corporation
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let F:ℝ×ℝ→ℝ be a real-valued polynomial function of the form F(x,y)=as(x)ys+as-1(x)ys-1+⋯+a0(x), where the degree s of y in F(x,y) is greater than or equal to 1. For arbitrary polynomial function f(x)∈ℝ[x], x∈ℝ, we will find a polynomial solution y(x)∈ℝ[x] to satisfy the following equation: (*): F(x,y(x))=af(x), where a∈ℝ is a constant depending on the solution y(x), namely, a quasi-coincidence (point) solution of (*), and a is called a quasi-coincidence value. In this paper, we prove that (i) the leading coefficient as(x) must be a factor of f(x), and (ii) each solution of (*) is of the form y(x)=-as-1(x)/sas(x)+λp(x), where λ is arbitrary and p(x)=c(f(x)/as(x))1/s is also a factor of f(x), for some constant c∈ℝ, provided the equation (*) has infinitely many quasi-coincidence (point) solutions.
ISSN:1110-757X
1687-0042
DOI:10.1155/2013/959464