Deconvolution Filtering for Nonlinear Stochastic Systems with Randomly Occurring Sensor Delays via Probability-Dependent Method

This paper deals with a robust H∞ deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable sequence following the Bernoulli distribution with...

Full description

Saved in:
Bibliographic Details
Published inAbstract and Applied Analysis Vol. 2013; no. 2013; pp. 40 - 51-1105
Main Authors Luo, Yuqiang, Wei, Guoliang, Karimi, Hamid Reza, Wang, Licheng
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Limiteds 01.01.2013
Hindawi Puplishing Corporation
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper deals with a robust H∞ deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable sequence following the Bernoulli distribution with time-varying probability. The purpose is to design an H∞ deconvolution filter such that, for all the admissible randomly occurring sensor delays, nonlinear disturbances, and external noises, the input signal distorted by the transmission channel could be recovered to a specified extent. By utilizing the constructed Lyapunov functional relying on the time-varying probability parameters, the desired sufficient criteria are derived. The proposed H∞ deconvolution filter parameters include not only the fixed gains obtained by solving a convex optimization problem but also the online measurable time-varying probability. When the time-varying sensor delays occur randomly with a time-varying probability sequence, the proposed gain-scheduled filtering algorithm is very effective. The obtained design algorithm is finally verified in the light of simulation examples.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/814187