Electric Conductive Pattern Element Fabricated Using Commercial Inkjet Printer for Paper-Based Analytical Devices
Herein, we proposed the addition of an inkjet-printed conductive pattern to paper-based analytical devices (PADs) in order to expand their applications. An electric conductive pattern was easily, quickly, and inexpensively fabricated using a commercial inkjet printer. The addition of a printed elect...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 87; no. 11; pp. 5762 - 5765 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Herein, we proposed the addition of an inkjet-printed conductive pattern to paper-based analytical devices (PADs) in order to expand their applications. An electric conductive pattern was easily, quickly, and inexpensively fabricated using a commercial inkjet printer. The addition of a printed electric element will enhance the applications of PADs without the loss of properties such as cost efficiency, disposability, and portability. In this study, we applied an inkjet-printed heater to a piece of paper and investigated its characteristics. The use of the heater as a valve, concentrator, and heat source for chemical reactions on PADs was investigated. Previously, these functions were difficult to realize with PADs. The inkjet-printed heater was used as a valve and concentrator through evaporation of the working fluid and solvent, and was also found to be useful for providing heat for chemical reactions. Thus, the combination of printed electric circuits and PADs has many potential applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.5b01568 |