Torsional Potential Energy Surfaces of Dinitrobenzene Isomers
The torsional potential energy surfaces of 1,2-dinitrobenzene, 1,3-dinitrobenzene, and 1,4-dinitrobenzene were calculated using the B3LYP functional with 6-31G(d) basis sets. Three-dimensional energy surfaces were created, allowing each of the two C-N bonds to rotate through 64 positions. Dinitroben...
Saved in:
Published in | Advances in Condensed Matter Physics Vol. 2017; no. 2017; pp. 1 - 7-019 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Limiteds
01.01.2017
Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The torsional potential energy surfaces of 1,2-dinitrobenzene, 1,3-dinitrobenzene, and 1,4-dinitrobenzene were calculated using the B3LYP functional with 6-31G(d) basis sets. Three-dimensional energy surfaces were created, allowing each of the two C-N bonds to rotate through 64 positions. Dinitrobenzene was chosen for the study because each of the three different isomers has widely varying steric hindrances and bond hybridization, which affect the energy of each conformation of the isomers as the nitro functional groups rotate. The accuracy of the method is determined by comparison with previous theoretical and experimental results. The surfaces provide valuable insight into the mechanics of conjugated molecules. The computation of potential energy surfaces has powerful application in modeling molecular structures, making the determination of the lowest energy conformations of complex molecules far more computationally accessible. |
---|---|
ISSN: | 1687-8108 1687-8124 |
DOI: | 10.1155/2017/3296845 |