Controlling Capillary-Driven Fluid Transport in Paper-Based Microfluidic Devices Using a Movable Valve

This paper describes a novel strategy for fabricating the movable valve on paper-based microfluidic devices to manipulate capillary-driven fluids. The movable valve fabrication is first realized using hollow rivets as the holding center to control the paper channel in different layer movement that r...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 89; no. 11; pp. 5707 - 5712
Main Authors Li, Bowei, Yu, Lijuan, Qi, Ji, Fu, Longwen, Zhang, Peiqing, Chen, Lingxin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes a novel strategy for fabricating the movable valve on paper-based microfluidic devices to manipulate capillary-driven fluids. The movable valve fabrication is first realized using hollow rivets as the holding center to control the paper channel in different layer movement that results in the channel’s connection or disconnection. The relatively simple valve fabrication procedure is robust, versatile, and compatible with microfluidic paper-based analytical devices (μPADs) with differing levels of complexity. It is remarkable that the movable valve can be convenient and free to control fluid without the timing setting, advantages that make it user-friendly for untrained users to carry out the complex multistep operations. For the performance of the movable valve to be verified, several different designs of μPADs were tested and obtained with satisfactory results. In addition, in the proof-of-concept enzyme-linked immunosorbent assay experiments, we demonstrate the use of these valves in μPADs for the successful analysis of samples of carcino-embryonic antigen, showing good sensitivity and reproducibility. We hope this technique will open new avenues for the fabrication of paper-based valves in an easily adoptable and widely available way on μPADs and provide potential point-of-care applications in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.7b00726