Simulations and Measurements of Electric Fields Emitted from a LTE Base Station in an Urban Area

Radiation patterns emitted from a long-term evolution (LTE) base station antenna were first simulated by the finite-difference time domain (FDTD) method. The validity of simulation results of radiation patterns was further checked by measurement data. After validating the accuracy of the FDTD method...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of antennas and propagation Vol. 2014; no. 2014; pp. 1 - 10
Main Authors Chen, Hsing-Yi, Lin, Tsung-Han
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2014
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radiation patterns emitted from a long-term evolution (LTE) base station antenna were first simulated by the finite-difference time domain (FDTD) method. The validity of simulation results of radiation patterns was further checked by measurement data. After validating the accuracy of the FDTD method, electric fields at 123 test sites around a LTE base station in an urban area of Taipei City were simulated. Simulated electric fields were also validated by comparison with measured data obtained by a high frequency selective radiation meter with an isotropic E-field probe. Simulated and measured electric fields are in the range of 0.104–1.182 and 0.098–1.179 V/m at 1795 MHz, respectively. From obtained electric field strengths, it is ensured that the urban area is a good signal environment. The maximum power density emitted from the LTE base station is about 1.853 × 10 - 4 mW/cm2 and is thus far below the safety standard value of 1.197 mW/cm2 for human exposure to RF radiation at 1795 MHz.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-5869
1687-5877
DOI:10.1155/2014/147341