Proton and Copper Binding to Humic Acids Analyzed by XAFS Spectroscopy and Isothermal Titration Calorimetry

Proton and copper (Cu) binding to soil and lignite-based humic acid (HA) was investigated by combining X-ray absorption fine structure (XAFS) spectroscopy, isothermal titration calorimetry (ITC), and nonideal-competitive-adsorption (NICA) modeling. NICA model calculations and XAFS results showed tha...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 52; no. 7; pp. 4099 - 4107
Main Authors Xu, Jinling, Koopal, Luuk K, Fang, Linchuan, Xiong, Juan, Tan, Wenfeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proton and copper (Cu) binding to soil and lignite-based humic acid (HA) was investigated by combining X-ray absorption fine structure (XAFS) spectroscopy, isothermal titration calorimetry (ITC), and nonideal-competitive-adsorption (NICA) modeling. NICA model calculations and XAFS results showed that bidentate and monodentate complexation occurred for Cu binding to HA. The site-type-specific thermodynamic parameters obtained by combining ITC measurements and NICA calculations revealed that copper binding to deprotonated carboxylic-type sites was entropically driven and that to deprotonated phenolic-type sites was driven by entropy and enthalpy. Copper binding to HA largely depended on the site-type and coordination environment, but the thermodynamic binding mechanisms for Cu binding to the specific site-types were similar for the different HAs studied. By comparing the site-type-specific thermodynamic parameters of HA–Cu complexation with those of low molar mass organic acids, the Cu coordination could be further specified. Bidentate carboxylic–Cu complexes made the dominating contributions to Cu binding to HA. The present study not only yields molecular-scale mechanisms of ion binding to carboxylic- and phenolic-type sites of HA but also provides the new insight that the universal nature of site-type-specific thermodynamic data enables quantitative estimation of the binding structures of heavy metal ions to humic substances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.7b06281