Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints
It is widely recognized that the mechanical parameters for unfilled and rough rock joints, such as the peak shear strength, can vary with scale. However, due to contradictory results concerning the extent and nature of the scale effect reported in the literature, it is still a debated subject. A con...
Saved in:
Published in | International journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 82; pp. 36 - 47 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It is widely recognized that the mechanical parameters for unfilled and rough rock joints, such as the peak shear strength, can vary with scale. However, due to contradictory results concerning the extent and nature of the scale effect reported in the literature, it is still a debated subject. A conceptual model developed by Johansson and Stille 2014 suggests how roughness and matedness at different scales influences the peak shear strength for fresh, rough and unweathered joint. However, the model's ability to predict how the roughness and matedness affects the peak shear strength at different scales was not verified. The aim of this paper is to investigate the ability of the conceptual model to estimate the peak shear strength at different degrees of matedness and scales. A series of direct shear test were carried out at two different scales and two different degrees of matedness. The peak shear strength from the tests was compared to the peak shear strength calculated with the conceptual model. The results showed that the model can predict the peak shear strength for both the perfectly mated and the unmated joints. No scale effect was observed in the shear tests, which is in line with the predictions using the model. The influence of matedness in combination with scale might explain some of the contradictory findings regarding the scale effect.
•Shear tests are performed at two different scales and two degrees of matedness.•Measured and calculated peak shear strengths are compared with good agreement.•No scale effect observed on peak shear strength.•Results suggest scale effect may originate from a combination of matedness and scale. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1365-1609 1873-4545 1873-4545 |
DOI: | 10.1016/j.ijrmms.2015.11.010 |