Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA

Previous pedestrian evacuation modeling for tsunamis has not considered variable wave arrival times or critical junctures (e.g., bridges), and did not effectively communicate multiple evacuee travel speeds. We summarize an approach that identifies evacuation corridors, recognizes variable wave arriv...

Full description

Saved in:
Bibliographic Details
Published inNatural hazards (Dordrecht) Vol. 80; no. 2; pp. 1031 - 1056
Main Authors Priest, George R., Stimely, Laura L., Wood, Nathan J., Madin, Ian P., Watzig, Rudie J.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous pedestrian evacuation modeling for tsunamis has not considered variable wave arrival times or critical junctures (e.g., bridges), and did not effectively communicate multiple evacuee travel speeds. We summarize an approach that identifies evacuation corridors, recognizes variable wave arrival times, and produces a map of minimum pedestrian travel speeds to reach safety, termed a “beat-the-wave” (BTW) evacuation analysis. We demonstrate the improved approach by evaluating difficulty of pedestrian evacuation of Seaside, Oregon, for a local tsunami generated by a Cascadia subduction zone earthquake. We establish evacuation paths by calculating the least-cost distance (LCD) to safety for every grid cell in a tsunami hazard zone using geospatial, anisotropic path distance algorithms. Minimum BTW speed to safety on LCD paths is calculated for every grid cell by dividing surface distance from that cell to safety by the tsunami arrival time at safety. We evaluated three scenarios of evacuation difficulty: (1) all bridges are intact with a 5-min evacuation delay from the start of earthquake, (2) only retrofitted bridges are considered intact with a 5-min delay, and (3) only retrofitted bridges are considered intact with a 10-min delay. BTW maps also take into account critical evacuation points along complex shorelines (e.g., peninsulas, bridges over shore-parallel estuaries) where evacuees could be caught by tsunami waves. The BTW map is able to communicate multiple pedestrian travel speeds, which are typically visualized by multiple maps with current LCD-based mapping practices. Results demonstrate that evacuation of Seaside is problematic seaward of the shore-parallel waterways for those with any limitations on mobility. Tsunami vertical evacuation refuges or additional pedestrian bridges may be effective ways of reducing loss of life seaward of these waterways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0921-030X
1573-0840
DOI:10.1007/s11069-015-2011-4