Population Based Reweighting of Scaled Molecular Dynamics

Molecular dynamics simulation using enhanced sampling methods is one of the powerful computational tools used to explore protein conformations and free energy landscapes. Enhanced sampling methods often employ either an increase in temperature or a flattening of the potential energy surface to rapid...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 117; no. 42; pp. 12759 - 12768
Main Authors Sinko, William, Miao, Yinglong, de Oliveira, César Augusto F, McCammon, J. Andrew
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 24.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Molecular dynamics simulation using enhanced sampling methods is one of the powerful computational tools used to explore protein conformations and free energy landscapes. Enhanced sampling methods often employ either an increase in temperature or a flattening of the potential energy surface to rapidly sample phase space, and a corresponding reweighting algorithm is used to recover the Boltzmann statistics. However, potential energies of complex biomolecules usually involve large fluctuations on a magnitude of hundreds of kcal/mol despite minimal structural changes during simulation. This leads to noisy reweighting statistics and complicates the obtainment of accurate final results. To overcome this common issue in enhanced conformational sampling, we propose a scaled molecular dynamics method, which modifies the biomolecular potential energy surface and employs a reweighting scheme based on configurational populations. Statistical mechanical theory is applied to derive the reweighting formula, and the canonical ensemble of simulated structures is recovered accordingly. Test simulations on alanine dipeptide and the fast folding polypeptide Chignolin exhibit sufficiently enhanced conformational sampling and accurate recovery of free energy surfaces and thermodynamic properties. The results are comparable to long conventional molecular dynamics simulations and exhibit better recovery of canonical statistics over methods which employ a potential energy term in reweighting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/jp401587e