Local pH at Nonionic and Zwitterionic Lipid/Water Interfaces Revealed by Heterodyne-Detected Electronic Sum-Frequency Generation: A Unified View to Predict Interfacial pH of Biomembranes

For biomembranes, which are composed of neutral as well as charged lipids, the local pH at lipid/water interfaces is extremely important in their structural formation and functional activity. In our previous study of the charged lipid/water interfaces, we found that the local pH at the interface is...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 127; no. 24; pp. 5445 - 5452
Main Authors Kundu, Achintya, Yamaguchi, Shoichi, Tahara, Tahei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For biomembranes, which are composed of neutral as well as charged lipids, the local pH at lipid/water interfaces is extremely important in their structural formation and functional activity. In our previous study of the charged lipid/water interfaces, we found that the local pH at the interface is governed by the positive or negative sign of the charge of the lipid: i.e., the local pH is dictated by the repulsive or attractive electrostatic interaction between the charged lipid headgroup and the proton. Because of the lack of net charge in the headgroup of the neutral lipid, the factor determining the local pH at neutral lipid/water interfaces is less straightforward, and therefore it is more challenging to predict the local pH. Here we apply heterodyne-detected electronic sum frequency generation (HD-ESFG) spectroscopy to nonionic and zwitterionic lipids to investigate the local pH at the neutral lipid/water interfaces. The obtained results indicate that the local pH at the nonionic lipid/water interface is higher than in bulk water by 0.8 whereas the local pH at the zwitterionic lipid/water interface is lower by 0.6, although the latter is subject to significant uncertainty. The present HD-ESFG study on neutral lipids, combined with the previous study on charged lipids, presents a unified view to consider the local pH at biomembranes based on the balance between the electrostatic interaction and the hydrophobicity provided by the lipid.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
1520-5207
DOI:10.1021/acs.jpcb.3c02002