Degradation of domains with sequential field application
Recent experiments show striking unexpected features when alternating square magnetic field pulses are applied to ferromagnetic samples: domains show area reduction and domains walls change their roughness. We explain these phenomena with a simple scalar-field model, using a numerical protocol that...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
20.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent experiments show striking unexpected features when alternating square magnetic field pulses are applied to ferromagnetic samples: domains show area reduction and domains walls change their roughness. We explain these phenomena with a simple scalar-field model, using a numerical protocol that mimics the experimental one. For a bubble and a stripe domain, we reproduce the experimental findings: The domains shrink by a combination of linear and exponential behavior. We also reproduce the roughness exponents found in the experiments. Our results suggest that the observed effects are due to a change in the disorder correlation length when the domain walls are subject to alternating fields during the first cycles, where the initial state of the interface plays a crucial role. Finally, our simulations explain the area loss by the interplay between disorder effects and effective fields induced by the local domain curvature. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2009.14205 |