Quantitative imaging of hybrid chiral spin textures in magnetic multilayer systems by Lorentz microscopy
Chiral magnetic textures in ultrathin perpendicularly magnetised multilayer film stacks with an interfacial Dzyaloshinskii-Moriya interaction have been the focus of much research recently. The chirality associated with the broken inversion symmetry at the interface between an ultrathin ferromagnetic...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chiral magnetic textures in ultrathin perpendicularly magnetised multilayer film stacks with an interfacial Dzyaloshinskii-Moriya interaction have been the focus of much research recently. The chirality associated with the broken inversion symmetry at the interface between an ultrathin ferromagnetic layer and a heavy metal with large spin-orbit coupling supports homochiral Néel domain walls and hedgehog (Néel) skyrmions. Under spin-orbit torques these Néel type magnetic structures are predicted, and have been measured, to move at high velocities. However recent studies have indicated that some multilayered systems may possess a more complex hybrid domain wall configuration, due to the competition between interfacial DMI and interlayer dipolar fields. These twisted textures are expected to have thickness dependent Néel and Bloch contributions to the domain or skyrmion walls. In this work, we use the methods of Lorentz microscopy to measure quantitatively for the first time experimentally both; i) the contributions of the Néel and Bloch contributions and ii) their spatial spin variation at high resolution. These are compared with modelled and simulated structures which are in excellent agreement with our experimental results. Our quantitative analysis provides powerful direct evidence of the Bloch wall component which exists in these hybrid walls and will be significant when exploiting such phenomena in spintronic applications. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1901.03652 |