General Boundary Value Problems of the Korteweg-de Vries Equation on a Bounded Domain
In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval \begin{equation} u_t+u_x+u_{xxx}+uu_x=0,\qquad u(x,0)=\phi(x), \qquad 0<x<L, \ t>0 \qquad (1) \end{equation} subject to the nonhomogeneous boundary conditions, \begin{eq...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
23.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1703.08154 |
Cover
Summary: | In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval \begin{equation} u_t+u_x+u_{xxx}+uu_x=0,\qquad u(x,0)=\phi(x), \qquad 0<x<L, \ t>0 \qquad (1) \end{equation} subject to the nonhomogeneous boundary conditions, \begin{equation} B_1u=h_1(t), \qquad B_2 u= h_2 (t), \qquad B_3 u= h_3 (t) \qquad t>0 \qquad (2) \end{equation} where \[ B_i u =\sum _{j=0}^2 \left(a_{ij} \partial ^j_x u(0,t) + b_{ij} \partial ^j_x u(L,t)\right), \qquad i=1,2,3,\] and \(a_{ij}, \ b_{ij}\) \( (j,i=0, 1,2,3)\) are real constants. Under some general assumptions imposed on the coefficients \(a_{ij}, \ b_{ij}\), \( j,i=0, 1,2,3\), the IBVPs (1)-(2) is shown to be locally well-posed in the space \(H^s (0,L)\) for any \(s\geq 0\) with \(\phi \in H^s (0,L)\) and boundary values \(h_j, j=1,2,3\) belonging to some appropriate spaces with optimal regularity. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1703.08154 |