General Boundary Value Problems of the Korteweg-de Vries Equation on a Bounded Domain

In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval \begin{equation} u_t+u_x+u_{xxx}+uu_x=0,\qquad u(x,0)=\phi(x), \qquad 0<x<L, \ t>0 \qquad (1) \end{equation} subject to the nonhomogeneous boundary conditions, \begin{eq...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Capistrano-Filho, R. A, Sun, Shu-Ming, Zhang, Bing-Yu
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 23.03.2017
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1703.08154

Cover

More Information
Summary:In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval \begin{equation} u_t+u_x+u_{xxx}+uu_x=0,\qquad u(x,0)=\phi(x), \qquad 0<x<L, \ t>0 \qquad (1) \end{equation} subject to the nonhomogeneous boundary conditions, \begin{equation} B_1u=h_1(t), \qquad B_2 u= h_2 (t), \qquad B_3 u= h_3 (t) \qquad t>0 \qquad (2) \end{equation} where \[ B_i u =\sum _{j=0}^2 \left(a_{ij} \partial ^j_x u(0,t) + b_{ij} \partial ^j_x u(L,t)\right), \qquad i=1,2,3,\] and \(a_{ij}, \ b_{ij}\) \( (j,i=0, 1,2,3)\) are real constants. Under some general assumptions imposed on the coefficients \(a_{ij}, \ b_{ij}\), \( j,i=0, 1,2,3\), the IBVPs (1)-(2) is shown to be locally well-posed in the space \(H^s (0,L)\) for any \(s\geq 0\) with \(\phi \in H^s (0,L)\) and boundary values \(h_j, j=1,2,3\) belonging to some appropriate spaces with optimal regularity.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1703.08154