Hyper-reduction for Petrov-Galerkin reduced order models

Projection-based Reduced Order Models minimize the discrete residual of a "full order model" (FOM) while constraining the unknowns to a reduced dimension space. For problems with symmetric positive definite (SPD) Jacobians, this is optimally achieved by projecting the full order residual o...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors S Ares de Parga, Bravo, J R, Hernandez, J A, Zorrilla, R, Rossi, R
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.09.2023
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2309.16267

Cover

Loading…
More Information
Summary:Projection-based Reduced Order Models minimize the discrete residual of a "full order model" (FOM) while constraining the unknowns to a reduced dimension space. For problems with symmetric positive definite (SPD) Jacobians, this is optimally achieved by projecting the full order residual onto the approximation basis (Galerkin Projection). This is sub-optimal for non-SPD Jacobians as it only minimizes the projection of the residual, not the residual itself. An alternative is to directly minimize the 2-norm of the residual, achievable using QR factorization or the method of the normal equations (LSPG). The first approach involves constructing and factorizing a large matrix, while LSPG avoids this but requires constructing a product element by element, necessitating a complementary mesh and adding complexity to the hyper-reduction process. This work proposes an alternative based on Petrov-Galerkin minimization. We choose a left basis for a least-squares minimization on a reduced problem, ensuring the discrete full order residual is minimized. This is applicable to both SPD and non-SPD Jacobians, allowing element-by-element assembly, avoiding the use of a complementary mesh, and simplifying finite element implementation. The technique is suitable for hyper-reduction using the Empirical Cubature Method and is applicable in nonlinear reduction procedures.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2309.16267