Reliability of Neural Networks Based on Spintronic Neurons
Spintronic technology is emerging as a direction for the hardware implementation of neurons and synapses of neuromorphic architectures. In particular, a single spintronic device can be used to implement the nonlinear activation function of neurons. Here, we propose how to implement spintronic neuron...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
05.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Spintronic technology is emerging as a direction for the hardware implementation of neurons and synapses of neuromorphic architectures. In particular, a single spintronic device can be used to implement the nonlinear activation function of neurons. Here, we propose how to implement spintronic neurons with a sigmoidal and ReLU-like activation functions. We then perform a numerical experiment showing the robustness of neural networks made by spintronic neurons all having different activation functions to emulate device-to-device variations in a possible hardware implementation of the network. Therefore, we consider a vanilla neural network implemented to recognize the categories of the Mixed National Institute of Standards and Technology database, and we show an average accuracy of 98.87 % in the test dataset which is very close to the 98.89% as obtained for the ideal case (all neurons have the same sigmoid activation function). Similar results are also obtained with neurons having a ReLU-like activation function. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2106.16043 |