Geometric vector potentials from non-adiabatic spin dynamics
We propose a theoretical framework that captures the geometric vector potential emerging from the non-adiabatic spin dynamics of itinerant carriers subject to arbitrary magnetic textures. Our approach results in a series of constraints on the geometric potential and the non-adiabatic geometric phase...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
10.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a theoretical framework that captures the geometric vector potential emerging from the non-adiabatic spin dynamics of itinerant carriers subject to arbitrary magnetic textures. Our approach results in a series of constraints on the geometric potential and the non-adiabatic geometric phase associated with it. These constraints play a decisive role when studying the geometric spin phase gathered by conducting electrons in ring interferometers under the action of in-plane magnetic textures, allowing a simple characterization of the topological transition recently reported by Saarikoski et al. [Phys. Rev. B 91, 241406(R) (2015)] in Ref. 1. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1703.07100 |