Enantioselective Biotransformation of Chiral PCBs in Whole Poplar Plants

Chiral PCBs have been used as molecular probes of biological metabolic processes due to their special physical, chemical, and biological properties. Many animal studies showed the enantioselective biotransformation of chiral PCBs, but it is unclear whether plants can enantioselectively biotransform...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 45; no. 6; pp. 2308 - 2316
Main Authors Zhai, Guangshu, Hu, Dingfei, Lehmler, Hans-Joachim, Schnoor, Jerald L
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chiral PCBs have been used as molecular probes of biological metabolic processes due to their special physical, chemical, and biological properties. Many animal studies showed the enantioselective biotransformation of chiral PCBs, but it is unclear whether plants can enantioselectively biotransform chiral PCBs. In order to explore the enantioselectivity of chiral PCBs in whole plants, poplars (Populus deltoides × nigra, DN34), a model plant with complete genomic sequence, were hydroponically exposed to 2,2′,3,5′,6-pentachlorobiphenyl (PCB95) and 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB136) for 20 days. PCB95 and PCB136 were shown to be absorbed, taken-up and translocated in whole poplars, and they were detected in various tissues of whole poplars. However, the enantioselectivity of poplar for PCB95 and PCB136 proved to be quite different. The first eluting enantiomer of PCB95 was enantioselectively removed in whole poplar, especially in the middle and bottom xylem. It was likely enantioselectively metabolized inside poplar tissues, in contrast to racemic mixtures of PCB95 remaining in hydroponic solutions in contact with plant roots of whole and dead poplars. Unlike PCB95, PCB136 remained nearly racemic in most parts of whole poplars after 20 days exposure. These results suggest that PCB136 is more difficult to be enantioslectively biotransformed than PCB95 in whole poplars. This is the first evidence of enantioselectivity of chiral PCBs in whole plants, and suggests that poplars can enantioselectively biotransform at least one chiral PCB.
ISSN:0013-936X
1520-5851
DOI:10.1021/es1033662