Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism
A triggering mechanism responsible for the explosive onset of edge localised modes (ELMs) in fusion plasmas is identified by performing, for the first time, non-linear magnetohydrodynamic simulations of repetitive type-I ELMs. Briefly prior to the ELM crash, destabilising and stabilising terms are a...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
26.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A triggering mechanism responsible for the explosive onset of edge localised modes (ELMs) in fusion plasmas is identified by performing, for the first time, non-linear magnetohydrodynamic simulations of repetitive type-I ELMs. Briefly prior to the ELM crash, destabilising and stabilising terms are affected at different timescales by an increasingly ergodic magnetic field caused by non-linear interactions between the axisymmetric background plasma and growing non-axisymmetric perturbations. The separation of timescales prompts the explosive, i.e. faster than exponential, growth of an ELM crash which lasts \({\sim}\) 500 \({\mu}\)s. The duration and size of the simulated ELM crashes compare qualitatively well with type-I ELMs in ASDEX Upgrade. As expected for type-I ELMs, a direct proportionality between the heating power in the simulations and the ELM repetition frequency is obtained. The simulations presented here are a major step forward towards predictive modelling of ELMs and of the assessment of mitigation techniques in ITER and other future tokamaks. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2007.09997 |