Topological insulating phase arising in transition metal dichalcogenide alloy

Transition metal dichalcogenides have been the subject of numerous studies addressing technological applications and fundamental issues. Single-layer PtSe2 is a semiconductor with a trivial bandgap, in contrast, its counterpart with 25% of Se atoms substituted by Hg, Pt2HgSe3 (jacutingaite, a natura...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors F Crasto de Lima, Focassio, B, Miwa, R H, Fazzio, A
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 12.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transition metal dichalcogenides have been the subject of numerous studies addressing technological applications and fundamental issues. Single-layer PtSe2 is a semiconductor with a trivial bandgap, in contrast, its counterpart with 25% of Se atoms substituted by Hg, Pt2HgSe3 (jacutingaite, a naturally occurring mineral), is a 2D topological insulator with a large bandgap. Based on ab-initio calculations, we investigate the energetic stability, and the topological transition in Pt(HgxSe1-x)2 as a function of alloy concentration, and the distribution of Hg atoms embedded in the PtSe2 host. Our findings reveal the dependence of the topological phase with respect to the alloy concentration and robustness with respect distribution of Hg. Through a combination of our ab-initio results and a defect wave function percolation model, we estimate the random alloy concentration threshold for the topological transition to be only 9%. Our results expand the possible search for non-trivial topological phases in random alloy systems.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2212.05863