Surrogate Approximation of the Grad-Shafranov Free Boundary Problem via Stochastic Collocation on Sparse Grids

In magnetic confinement fusion devices, the equilibrium configuration of a plasma is determined by the balance between the hydrostatic pressure in the fluid and the magnetic forces generated by an array of external coils and the plasma itself. The location of the plasma is not known a priori and mus...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Elman, Howard C, Liang, Jiaxing, Sánchez-Vizuet, Tonatiuh
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 04.09.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2105.12217

Cover

More Information
Summary:In magnetic confinement fusion devices, the equilibrium configuration of a plasma is determined by the balance between the hydrostatic pressure in the fluid and the magnetic forces generated by an array of external coils and the plasma itself. The location of the plasma is not known a priori and must be obtained as the solution to a free boundary problem. The partial differential equation that determines the behavior of the combined magnetic field depends on a set of physical parameters (location of the coils, intensity of the electric currents going through them, magnetic permeability, etc.) that are subject to uncertainty and variability. The confinement region is in turn a function of these stochastic parameters as well. In this work, we consider variations on the current intensities running through the external coils as the dominant source of uncertainty. This leads to a parameter space of dimension equal to the number of coils in the reactor. With the aid of a surrogate function built on a sparse grid in parameter space, a Monte Carlo strategy is used to explore the effect that stochasticity in the parameters has on important features of the plasma boundary such as the location of the x-point, the strike points, and shaping attributes such as triangularity and elongation. The use of the surrogate function reduces the time required for the Monte Carlo simulations by factors that range between 7 and over 30.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2105.12217