Back-Arc Extension in the Southern Andes: A Review and Critical Reappraisal

The interpretation that the mafic 'rocas verdes' (green rocks) complex of the southern Andes represents part of the uplifted floor of a Late Jurassic to Early Cretaceous back-arc basin has proved particularly useful in understanding the geological evolution of the southern Andes, the north...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 300; no. 1454; p. 319
Main Author I. W. D. Dalziel
Format Journal Article
LanguageEnglish
Published The Royal Society 26.03.1981
Online AccessGet full text

Cover

Loading…
More Information
Summary:The interpretation that the mafic 'rocas verdes' (green rocks) complex of the southern Andes represents part of the uplifted floor of a Late Jurassic to Early Cretaceous back-arc basin has proved particularly useful in understanding the geological evolution of the southern Andes, the north Scotia Ridge and the Antarctic Peninsula. Clear field evidence of the back-arc setting of the 'rocas verdes' gabbro-sheeted dyke - pillow lava ophiolitic assemblages has encouraged fruitful petrological and geochemical comparison with mid-ocean ridge and marginal basin basalts, other onshore ophiolite complexes, and Archaean greenstone belts. Uncertainty still surrounds estimates of the original width and depth of the basin, as well as the proportion of new mafic crust, compared with relict sialic crust, in the basin floor. These questions are unresolved, owing mainly to the considerable Lower Cretaceous turbiditic basin infill and the effects of mid-Cretaceous compressional deformation. While the field relations clearly indicate that the 'rocas verdes' basin is not an older piece of ocean floor 'trapped' behind a volcanic arc, it is not yet clear whether the basin is directly subduction-related or falls in the category of back-arc 'leaky transforms' like the proto-Gulf of California or apparent 'rip-off' features like the Andaman Sea.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.1981.0067