Dissolved uranium, vanadium and molybdenum behaviours during contrasting freshwater discharges in the Gironde Estuary (SW France)

Understanding trace metal behaviour in estuarine environments requires sampling strategies and analytical methods adapted to strong physical and geochemical gradients. In this study, we present a specific sampling strategy covering a wide range of hydrological conditions during nine cruises in 2003–...

Full description

Saved in:
Bibliographic Details
Published inEstuarine, coastal and shelf science Vol. 83; no. 4; pp. 550 - 560
Main Authors Strady, Emilie, Blanc, Gérard, Schäfer, Jörg, Coynel, Alexandra, Dabrin, Aymeric
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding trace metal behaviour in estuarine environments requires sampling strategies and analytical methods adapted to strong physical and geochemical gradients. In this study, we present a specific sampling strategy covering a wide range of hydrological conditions during nine cruises in 2003–2007 to characterise the behaviour of three dissolved metals (uranium, vanadium and molybdenum) in surface and bottom water along the salinity gradient of the highly turbid macrotidal Gironde Estuary using a solid–liquid extraction. Uranium behaved conservatively whatever the water discharges observed. The slight dissolved U depletion compared to the theoretical dilution line between the fluvial and marine end-members occasionally observed in the low salinity range (0–3) was attributed to the mixing of different water bodies of the Gironde tributaries. In contrast, dissolved V behaviour was largely influenced by the hydrological conditions, showing increasingly pronounced addition with decreasing freshwater discharges, (i.e. increasing residence times of water and particles in the estuary). This addition of dissolved V in the low- to mid-salinity range was attributed to desorption processes observed in the Maximum Turbidity Zone (MTZ). The distribution of dissolved Mo concentrations along the salinity gradient was highly variable. Apparent conservative, and non-conservative behaviours were observed and were related to the concomitance of desorption from SPM, inputs from sediments for additive distribution and biological uptake and removal into sediments for subtractive distribution. Based on the whole database (2003–2007), annual net fluxes to the coastal ocean were estimated for dissolved U (15.5–16.6 t yr −1) and V (31.3–36.7 t yr −1).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2009.05.006