Three-body recombination in physical chemistry

Three-body recombination, or ternary association, is a termolecular reaction in which three particles collide, forming a bound state between two, whereas the third escapes freely. Three-body recombination reactions play a significant role in many systems relevant to physics and chemistry. In particu...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Mirahmadi, Marjan, Pérez-Ríos, Jesús
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three-body recombination, or ternary association, is a termolecular reaction in which three particles collide, forming a bound state between two, whereas the third escapes freely. Three-body recombination reactions play a significant role in many systems relevant to physics and chemistry. In particular, they are relevant in cold and ultracold chemistry, quantum gases, astrochemistry, atmospheric physics, physical chemistry, and plasma physics. As a result, three-body recombination has been the subject of extensive work during the last 50 years, although primarily from an experimental perspective. Indeed, a general theory for three-body recombination remains elusive despite the available experimental information. Our group recently developed a direct approach based on classical trajectory calculations in hyperspherical coordinates for three-body recombination to amend this situation, leading to a first principle explanation of ion-atom-atom and atom-atom-atom three-body recombination processes. This review aims to summarize our findings on three-body recombination reactions and identify the remaining challenges in the field.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2304.05272