Experiment to detect dark energy forces using atom interferometry
The accelerated expansion of the universe motivates a wide class of scalar field theories that modify gravity on large scales. In regions where the weak field limit of General Relativity has been confirmed by experiment, such theories need a screening mechanism to suppress the new force. We have mea...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
19.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1812.08244 |
Cover
Loading…
Summary: | The accelerated expansion of the universe motivates a wide class of scalar field theories that modify gravity on large scales. In regions where the weak field limit of General Relativity has been confirmed by experiment, such theories need a screening mechanism to suppress the new force. We have measured the acceleration of an atom toward a macroscopic test mass inside a high vacuum chamber, where the new force is unscreened in some theories. Our measurement, made using atom interferometry, shows that the attraction between atoms and the test mass does not differ appreciably from Newtonian gravity. This result places stringent limits on the free parameters in chameleon and symmetron theories of modified gravity. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1812.08244 |