Resolution Limits for the Noisy Non-Adaptive 20 Questions Problem
We establish fundamental limits on estimation accuracy for the noisy 20 questions problem with measurement-dependent noise and introduce optimal non-adaptive procedures that achieve these limits. The minimal achievable resolution is defined as the absolute difference between the estimated and the tr...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We establish fundamental limits on estimation accuracy for the noisy 20 questions problem with measurement-dependent noise and introduce optimal non-adaptive procedures that achieve these limits. The minimal achievable resolution is defined as the absolute difference between the estimated and the true locations of a target over a unit cube, given a finite number of queries constrained by the excess-resolution probability. Inspired by the relationship between the 20 questions problem and the channel coding problem, we derive non-asymptotic bounds on the minimal achievable resolution to estimate the target location. Furthermore, applying the Berry--Esseen theorem to our non-asymptotic bounds, we obtain a second-order asymptotic approximation to the achievable resolution of optimal non-adaptive query procedures with a finite number of queries subject to the excess-resolution probability constraint. We specialize our second-order results to measurement-dependent versions of several channel models including the binary symmetric, the binary erasure and the binary Z- channels. As a complement, we establish a second-order asymptotic achievability bound for adaptive querying and use this to bound the benefit of adaptive querying. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2004.07231 |