Mean range bunching of exotic nuclei produced by in-flight fragmentation and fission -- Stopped-beam experiments with increased efficiency
The novel technique of mean range bunching has been developed and applied at the projectile fragment separator FRS at GSI in four experiments of the FAIR phase-0 experimental program. Using a variable degrader system at the final focal plane of the FRS, the ranges of the different nuclides can be al...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
30.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The novel technique of mean range bunching has been developed and applied at the projectile fragment separator FRS at GSI in four experiments of the FAIR phase-0 experimental program. Using a variable degrader system at the final focal plane of the FRS, the ranges of the different nuclides can be aligned, allowing to efficiently implant a large number of different nuclides simultaneously in a gas-filled stopping cell or an implantation detector. Stopping and studying a cocktail beam overcomes the present limitations of stopped-beam experiments. The conceptual idea of mean range bunching is described and illustrated using simulations. In a single setting of the FRS, 37 different nuclides were stopped in the cryogenic stopping cell and were measured in a single setting broadband mass measurement with the multiple-reflection time-of-flight mass spectrometer of the FRS Ion Catcher. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2306.09350 |