Rapid classification of quantum sources enabled by machine learning
Deterministic nanoassembly may enable unique integrated on-chip quantum photonic devices. Such integration requires a careful large-scale selection of nanoscale building blocks such as solid-state single-photon emitters by the means of optical characterization. Second-order autocorrelation is a corn...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
27.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deterministic nanoassembly may enable unique integrated on-chip quantum photonic devices. Such integration requires a careful large-scale selection of nanoscale building blocks such as solid-state single-photon emitters by the means of optical characterization. Second-order autocorrelation is a cornerstone measurement that is particularly time-consuming to realize on a large scale. We have implemented supervised machine learning-based classification of quantum emitters as "single" or "not-single" based on their sparse autocorrelation data. Our method yields a classification accuracy of over 90% within an integration time of less than a second, realizing roughly a hundredfold speedup compared to the conventional, Levenberg-Marquardt approach. We anticipate that machine learning-based classification will provide a unique route to enable rapid and scalable assembly of quantum nanophotonic devices and can be directly extended to other quantum optical measurements. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1908.08577 |